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Hydrogen bonding plays a crucial role in stabilizing reactive
intermediates in enzyme active sites.1 For example, the acidity
of carbon acids is increased when hydrogen bonds are present to
stabilize the corresponding enolates.2,3 The strength of the
hydrogen bonds should depend on the hydrogen bond acceptor
orbitals. Hydrogen bond donation to theπ-system of an enolate
rather than to the oxygen lone pairs may enhance stabilization,
because this is where the formal negative charge resides. In
support, our examination of the crystal structure of 4-chloroben-
zoyl-CoA-dehalogenase,4 an enzyme that catalyzes a nucleophilic
substitution via a Meisenheimer intermediate, revealed that the
hydrogen bonds in the oxyanion hole are oriented toward the
π-system of a thioester carbonyl enolate. Thus, we set out to test
whether larger pKa shifts of carbon acids may be obtained when
the hydrogen bonds are oriented toward the enolateπ-system
rather than the lone pair electrons.

Previously we reported that1 binds 1,3-cyclohexanedionate
in acetonitrile with four hydrogen bonds directed to the anion’s
lone pairs (Ka ) 1.2× 104 M-1).5 The pKa drop imparted to 1,3-
cyclohexanedione by1 was only 1.0 pKa unit in acetonitrile. Given
our postulate that the acceptor orbitals should be an important
factor influencing the pKa shift, we examined a new receptor
capable of preferentially binding theπ-system of an enolate.

Our new host design (2) has six convergent intracavity amide
hydrogen bond donors capable of binding active methylene
enolates with four hydrogen bonds. The aromatic caps are
separated by a distance of 7 Å, forcing the enolates to be
sandwiched parallel between the aromatic rings, as previously
found for acetate.6 Molecular modeling7 supports encapsulation
of active methylene enolates with two pairs of hydrogen bonds
directed toward theπ-system of the guest carbonyl groups.

Before examining pKa shifts, we determined which enolates
were most complementary to2. The association constants of2
with various enolates were determined by 300 MHz1H NMR
titration experiments in 95:5 CD3CN/CD2Cl2 by following the

deshielding of the amide protons of2 with increasing enolate
concentration (Table 1A).8 In cases where there was a methyl
group adjacent to a carbonyl, the methyl protons were shielded
relative to their chemical shift in the absence of2, typically on
the order of 0.2 ppm. We ascribe these upfield shifts to the
diamagnetic anisotropy of the aromatic rings of2, suggesting that
these guests are positioned within the cavity.

Enolate3 was chosen for the pKa shift experiments because of
its high affinity for 2. A 1H NMR technique was employed to
probe the change in pKa values of 2-acetylcyclopentanone in the
presence of2. Bases were added to deprotonate 2-acetylcyclo-
pentanone in the presence of 1 equiv of2 and induce enolate
binding. The acid-base reaction was monitored by observing the
complexation-induced change in NH chemical shift of2 (Figure
1). Although CD3CN/CD2Cl2 (95:5) was used to measure the
association constants, CD2Cl2 was used in these studies to ensure
that 3 was completely encapsulated in2 upon generation (Ka >
105 M-1 in CD2Cl2). Importantly,1H NMR titration experiments
showed that 2-acetylcyclopentanone displayed minimal binding
to 2 (Ka < 10 M-1).

The bases employed to deprotonate 2-acetylcyclopentanone
were 15-crown-5 sodium phenoxides of differing base strength.
Each phenoxide used in the deprotonation study showed negligible
binding to 2 in CD2Cl2 (Table 1B). Titrating a solution of
2-acetylcyclopentanone with the phenoxides in CD2Cl2 showed
that in the absence of2 no acid/base chemistry occurred, except
with 9 which has a higher conjugate acid pKa value in water than
2-acetylcyclopentanone. Yet in the presence of2, 6 equiv of 2,4,6-
trichlorophenoxide, whose conjugate acid has a pKa value nearly
1.6 units lower than that of 2-acetylcyclopentanone in water,
deprotonated 40% of this diketone (Figure 1).

Next, we quantitated the pKa shift of 2-acetylcyclopentanone
promoted by the presence of2 and compared the result to that of
1 and 1,3-cyclohexanedione. Although the deprotonation studies
were conducted in CD2Cl2, it was necessary to determine the pKa

shift of 2-acetylcyclopentanone induced by2 in acetonitrile so
that the result could be compared to the original study using1.9

By using a method employing external indicators (HI),10 spec-
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trophotometric titrations were carried out on 2-acetylcyclopen-
tanone and 2,4,6-trichlorophenol in anhydrous acetonitrile. Plots
of [HI]/[I -] versus the volume of Bu4NOH (0.1N in 10:1 isopropyl
alcohol/methyl alcohol) titrant allowed the calculation of pKa

values using determined pKa values of the indicators.11 A pKa

value of 25.4 was found for 2-acetylcyclopentanone using thymol
blue sodium salt as the indicator.12 Similarly, a pKa value of 21.2
was determined for 2,4,6-trichlorophenol withR-naphtholbenzein.
Using the extent of deprotonation of 2-acetylcyclopentanone

induced by 2,4,6-trichlorophenoxide, along with the phenol’s pKa,
allowed us to calculate the pKa of the active methylene structure
as 22.5 in the presence of2. This is 2.9 pKa units lower than in
the absence of2. Compound1 only gave a 1.0 unit pKa shift to
1,3-cyclohexanedione.

Although our analysis is based upon a comparison between
only two receptors and their respective active methylene com-
pounds, we suggest that NH-π hydrogen bonding has a greater
effect on carbon acidity than hydrogen bonding to the lone pair
electrons. The important factor for increasing carbon acidity is
the differential binding of the conjugate acid and the enolate by
the receptor. When a carbon acid is converted to the enolate, there
is a significantly smaller increase in charge density on the oxygen
lone pairs relative to the change that occurs in theπ-system.
Therefore, to better stabilize an enolate relative to its conjugate
acid, it is more effective to employ a receptor that targets the
π-system rather than the oxygen lone pairs. Enzymes may exploit
this principle to increase the carbon acidities of their substrates
in order to assist in deprotonation by weak general bases
positioned in their active sites. Moreover, the same principle may
be used to stabilize enolate-like intermediates in other reactions
as suggested by the examination of 4-chlorobenzoyl-CoA-
dehalogenase. In summary, the hydrogen bond acceptor orbitals
are another factor to consider when seeking to understand carbon
acid pKa shifts induced by enzymes.
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Table 1. List of Sodium 15-Crown-5 (A) Enolates and (B)
Phenoxides Studied as Guests with2, the Anion Numbers,
Association Constants in (A) CD3CN:CD2Cl2 (95:5) and (B)
CD2Cl2, Aqueous pKa

13 and Determined Nonaqueous pKa Values of
Conjugate Acids

Figure 1. Change in the amide1H chemical shift of2 with increasing
base concentration in the deprotonation of 2-acetylcyclopentanone. (b)
is with phenoxide9, (9) with 10, and (2) with 11. Counterions were
15-crown-5 sodium salts, and the concentrations of2 and3 were 1.8×
10-2 M in CD2Cl2 at 23°C.
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